Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A. Subbiah Pandi, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}$ S. Shanmuga Sundara Raj, ${ }^{\text {b }}$ Hoong-Kun Fun ${ }^{\text {b }}$ and V. Raghukumar ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\mathbf{c}}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.068$
$w R$ factor $=0.185$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

A monoclinic polymorph of 3-amino-4'-(N, N-diethyl-amino)-5-methylbiphenyl-2,4-dicarbonitrile

The title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4}$, is found to crystallize in both the orthorhombic and the monoclinic crystal systems. In the monoclinic polymorph, the dihedral angle between the two phenyl rings is $53.5(2)^{\circ}$. Centrosymmetrically related molecules in the crystal are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form cyclic dimers. The structure of the monoclinic polymorph differs from that of the orthorhombic form reported earlier [Subbiah Pandi et al., (2000). Cryst. Res. Technol. 35, 1373-1381] with regard to the conformation of the biphenyl ring system and the molecular packing.

Comment

Biphenyl derivatives exhibit a wide spectrum of photophysical, biological and laser activities (Shukla et al., 1985; Nieger et al., 1998). We recently reported the structure of 3-amino-4'-(N, N-diethylamino)-5-methylbiphenyl-2,4-dicarbonitrile, (I), in the orthorhombic system (Subbiah Pandi et al., 2000). Here we report the structural details of a monoclinic polymorph of (I).

(I)

The bond lengths and bond angles observed in the present study agree well with the corresponding values reported for the orthorhombic form. However, the structures of the two polymorphs differ in the conformations of the biphenyl ring system and the diethylamino substituent. The dihedral angle between the two phenyl rings is $53.5(2)^{\circ}$ in the monoclinic form, whereas it is $41.4(1)^{\circ}$ in the orthorhombic form. In the monoclinic polymorph, one of the ethyl groups is twisted 9° more about the $\mathrm{C} 4^{\prime}-\mathrm{N} 4$ bond compared to that in the orthorhombic form. Even though in both polymorphs the packing of the molecules is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, the pattern of hydrogen bonding is different. In the monoclinic form, the molecules are linked by $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 3{ }^{\mathrm{i}}$ hydrogen bonds into cyclic centrosymmetric dimers denoted by the $R_{2}{ }^{2}(12)$ (Bernstein et al., 1995) ring system [H1 $A \cdots \mathrm{~N} 32.22, \mathrm{~N} 1 \cdots \mathrm{~N} 3 \quad 3.038(5) \AA$ and $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{~N} 3159^{\circ}$; symmetry code (i): $\left.3-x,-y,-z\right]$. In the orthorhombic form, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form zigzag chains.

Received 17 January 2002
Accepted 28 January 2002
Online 8 February 2002

Experimental

The title compound was synthesized according to the reaction described by Raghukumar et al. (2001). The crystals of the monoclinic form were grown at room temperature by slow evaporation of a solution of the compound in ethyl acetate and hexane (1:1). In our earlier work, the crystals of the orthorhombic form were grown from a mixture of ethyl acetate and methanol.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4}$
$M_{r}=304.39$
Monoclinic, $P 2_{d} / c$
$a=9.2925(4) \AA$
$b=10.8655(3) \AA$
$c=16.7229(5) \AA$
$\beta=90.367(2)^{\circ}$
$V=1688.44(10) \AA^{3}$
$Z=4$
$D_{x}=1.197 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3225
\quad reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Slab, yellow
$0.26 \times 0.14 \times 0.10 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-detector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.978, T_{\text {max }}=0.990$
10442 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.185$
$S=0.92$
3496 reflections
209 parameters
H-atom parameters constrained
3496 independent reflections
1313 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.124$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 13$
$l=-20 \rightarrow 20$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0674 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\min }=-0.18$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.010 (2)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 12-\mathrm{N} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$170.9(3)$	$\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 1-\mathrm{C} 6$	$-52.1(5)$
$\mathrm{C} 10-\mathrm{N} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$-3.0(5)$	$\mathrm{C}^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 1-\mathrm{C} 2$	$-53.5(5)$
$\mathrm{C} 12-\mathrm{N} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$-10.3(5)$	$\mathrm{C}^{\prime}-\mathrm{N} 4-\mathrm{C} 10-\mathrm{C} 11$	$83.6(4)$
$\mathrm{C} 10-\mathrm{N} 4-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	$175.8(3)$	$\mathrm{C} 4^{\prime}-\mathrm{N} 4-\mathrm{C} 12-\mathrm{C} 13$	$-77.3(4)$

Owing to the poor quality of the crystal, the higher angle reflections were very weak and only 32% of the reflections were found to be observed with $I>2 \sigma(I)$. This resulted in a high $R_{\text {int }}$ value. The 2θ maximum was limited to 53° because of the large fraction of weak

Figure 1
The structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme.
data at higher angles. All H atoms were fixed geometrically and allowed to ride on the parent non-H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

DV thanks UGC (India) for providing funding under a major project grant.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1999). WinGX. University of Glasgow, Scotland.
Nieger, M., Hupfer, H. \& Bolte, M. (1998). Acta Cryst. C54, 656-659.
Raghukumar, V., Murugan, P. \& Ramakrishnan, V. T. (2001). Synth. Commun. 31(22), 3497-3505.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shukla, A. P., Galy, A. M., Brouant, P., Galy, J. P., Soyfer, J. C., \& Barbe, J. (1985). VII-th Int. Symp. Med. Chem. Proceed. Vol. 2, pp. 213-214. Stockholm: Swedish Pharmaceutical Press.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Subbiah Pandi, A., Velmurugan, D., Raghukumar, V., Ramakrishnan, V. T., Shanmuga Sundara Raj, S. \& Fun, H. K. (2000). Cryst. Res. Technol. 35, 1373-1381.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

